This section explains the folder structure and pipeline flow.
student-grade-prediction/
│── data/ # Raw datasets
│ ├── student-mat.csv
│ ├── student-por.csv
│ └── ...
│
│── notebooks/ # Experiments/EDA
│ ├── 01_data_exploration.ipynb
│ ├── 02_feature_engineering.ipynb
│ └── 03_modeling.ipynb
│
│── results/ # Outputs: logs, metrics, models, figures
│ ├── figures/ # EDA plots
│ ├── logs/ # Logs from runs
│ ├── metrics/ # Evaluation reports (.json)
│ └── models/ # Saved pipelines (.pkl)
│
│── src/ # Source code (modular + reusable)
│ │── __init__.py
│ │
│ ├── data_loader.py # Load raw datasets
│ ├── preprocessing.py # Build preprocessing transformers
│ ├── eda.py # EDA utilities (optional)
│ ├── model.py # Train, evaluate, save pipeline
│ ├── utils.py # Logging, helpers
│ ├── main.py # CLI: train + evaluate + save
│ └── predict.py # CLI: load model + predict on new data
│
│── requirements.txt # Dependencies
│── README.md # Documentation
⬅️ Home | ➡️ Next: Usage |